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Abstract

Many problems in engineering can be classified as multi-objective optimization prob-
lems. These problems are formulated in terms of performance criteria and constraints.
To find a solution one needs to find an instantiation of the problem variables that
satisfies the constraints and at the same time results in high values of the performance
criteria. Two examples of such problems are design of a system and order negotiation
in the manufacturing context. In design, one has to select components and a structure
such that the components “fit together” while the resulting system delivers the desired
performance, e.g., the system is energy efficient as well as relatively inexpensive. In
order negotiation, the goal is to select the products to be manufactured, the amounts of
each product and the prices such as to satisfy goals of both the manufacturers and the
customers. The manufacturer wants to maximize the price and lead times, while the
customer is interested in the opposite. The constraints include manufacturing plant
capabilities, storage capabilities and other.

Problems of this kind are known to be NP-hard and thus one cannot expect full
algorithmic solutions. Moreover, since multiple performance criteria are involved, any
solution needs to make tradeoffs among them. Consequently, one has to settle for
less than optimality. Conceptualization of this kind of problem formulation is known
as satisficing solutions or good-enough-soon-enough solutions. Solutions of this kind
of problems typically use search as one of the components. However, since a generic
search algorithm does not guarantee finding solutions within a finite time, the search
incorporates features specific to a particular problem. In other words, the search is
domain and problem specific. Consequently, a special program needs to be developed
for any specific problem/domain. What if the problem formulation changes? Then
either a new program needs to be developed, or the original program needs to have built-
in mechanisms for adapting to changes. The latter approach is appropriate when the
changes in the constraints are parametric, while the former applies to non-parametric
changes in constraints and objective functions.

This thesis addresses this specific problem - how can a satisficing program be au-
tomatically synthesized from specifications such that it can: (1) monitor and control
its complexity, (2) adapt to parametric changes in the constraints. In order to develop
such a program we need to answer a number of questions. What is the language in
which problem specifications can be expressed? What algorithm or system can be used
to search for solutions to multi-objective satisficing problems? What algorithms should
be used to determine the aspiration levels (good-enough) for the objective functions
in satisficing problems? How does the program monitor and control its computational
complexity? What architecture should be used to implement the control of complexity
and program adaptation?

This research will investigate the use of: UML (Unified Modeling Language) to cap-
ture the structural aspects of the user’s view of problem formulations; OCL (Object
Constraint Language) to capture quantitative and global constraints; a general Con-
straint Problem Solver to implement search; Self-Controlling Program Architecture to
implement self-control and adaptation; mapping of multi-objective optimization prob-
lems to an agent based architecture in which each criterion (goal) is “represented”
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by an agent; negotiation as a mechanism to determine the aspiration levels for each
objective function; phase transitions for the purpose of monitoring for computation
intensive regions and controlling the program to avoid these regions.

To evaluate the approach, an experimental system will be implemented and tested
on two scenarios - a design scenario and an order negotiation scenario. Problem for-
mulations will be specified using the UML representation. The formulations will be
automatically translated to the selected Constraint Satisfaction Problem (CSP) lan-
guage and then used by the system to find satisficing solutions. The goal will be to
provide a proof-of-concept of developing such a self-controlling satisficing program that
(1) is applicable to various multi-objective optimization problems, (2) has the ability to
control its own complexity, and (3) can adapt to parametric changes in the constraints.
The first requirement will be satisfied by demonstrating that the same system can be
used in two different domains. In both scenarios, the system will be tested on both
hard and easy regions in order to show its ability to control its own complexity. The
phase transition phenomenon will be investigated, i.e., a model for phase transition
(complexity as a function of the parameter characterizing the amount of change) will
be developed and then used by the proposed system. The adaptability of the system
will be tested by changing parameters in the constraints during the system opera-
tion. The definition of a parameter to measure the adaptability will be part of this
research. Another aspect of the evaluation of the system is the quality of solutions to
multi-objective optimization problems it finds. Towards this aim the solutions will be
compared to known benchmark approaches.
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1 Problem Statement

Multi-objective optimization (also referred to as “multi-criteria optimization”) is a
core area in engineering, business practice and research. Application areas of multi-
objective optimization include resource allocation, transportation, logistics, distribu-
tion, investment decisions, business planning with uncertain information, and others.
Multi-objective optimization problems are formulated in terms of performance criteria
(objective functions) and constraints. Two examples of such problems are design of
a system and order negotiation in the manufacturing context. In design, one has to
select components and a structure such that the components “fit together” while the
resulting system delivers the desired performance, e.g., the system is energy efficient as
well as relatively inexpensive. In order negotiation, the goal is to select the products to
be manufactured, the amounts of each product and the prices such as to satisfy goals of
both the manufacturers and the customers. The manufacturer wants to maximize the
price and lead times, while the customer is interested in the opposite. The constraints
include manufacturing plant capabilities, storage capabilities and other.

To find a solution to a multi-objective optimization problem one needs to find an
instantiation of the problem variables that satisfies the constraints and at the same
time results in high values of the objective functions. Problems of this kind are known
to be NP-hard and thus one cannot expect full algorithmic solutions. Moreover, since
multiple performance criteria are involved, any solution needs to make tradeoffs among
them. Consequently, one has to settle for less than optimality. In other words, a better
approach can be first converting the original problem into a Constraint Satisfaction
Problem (CSP) and then finding a solution to the new CSP problem. Conceptualization
of this kind of problem formulation is known as satisficing solutions or good-enough-
soon-enough solutions. Solutions of this kind of problems typically use search as one of
the components. However, since a generic search algorithm does not guarantee finding
solutions within a finite time, the search incorporates features specific to a particular
problem. In other words, the search is domain and problem specific. Consequently, a
special program needs to be developed for any specific problem/domain. What if the
problem formulation changes? Then either a new program needs to be developed, or
the original program needs to have built-in mechanisms for adapting to changes. The
latter approach is appropriate when the changes in the constraints are parametric, while
the former applies to non-parametric changes in constraints and objective functions.

To solve the CSP problem described above, off-the-shelf CSP solvers could be used,
but all of them require coding in a CSP language. A user-oriented and high-level lan-
guage that will hide the implementation details related to the CSP solver is desirable
[92]. The Unified Modeling Language (UML) is a combination of such abstract and
graphical languages. The use of an abstract language like UML/OCL for domain mod-
eling brings the necessity of a translator and code generator that will read the abstract
language and generate the code for the target CSP solver. However, when automatic
translation of problem specifications into CSP code replaces the human programmer,
the automatically generated code may never terminate due to the complexity of CSP
search. Therefore, the replacement of manual CSP coding by a UML/OCL interface
requires a solution to the handling of the complexity of the search for a satisficing



solution.

This thesis addresses this specific problem - how can a satisficing program be au-
tomatically synthesized from high-level specifications such that it can: (1) monitor
and control its computational complexity, and (2) adapt to parametric changes in the
constraints. In order to develop such a program we need to answer a number of ques-
tions. What is the language in which problem specifications can be expressed? What
algorithm or system can be used to search for solutions to multi-criteria satisficing
problems? What algorithms should be used to determine the aspiration levels (good-
enough) for the objective functions in satisficing problems? How does the program
monitor and control its computational complexity? What architecture should be used
to implement the control of complexity and program adaptation?

2 Candidate Components of a Solution

The search for solutions starts with a short description of multi-objective optimization
problems. The challenges in finding one solution that optimizes all objectives are dis-
cussed first. From optimization, we switch to constraint satisfaction problems (CSP)
in general. An overview of existing CSP approaches are given. Since CSP algorithms
are outside the scope of this thesis, we focus more on the CSP solvers, the evaluation
of the performance of CSP solvers and the phase transition phenomena. Then, an
introduction to the concept of satisficing, as an alternative to optimization, is given.
Satisficing was originated from Herbert Simon’s [106] ideas on the conversion of op-
timization problems to constraint satisfaction problems when it becomes evident that
the extra cost of finding an optimum solution exceeds the benefits of finding one. The
satisficing approaches -approximate reasoning, meta-reasoning and bounded optimality-
are presented. After the satisficing approaches, a list of CSP solution methods and
tools are given. Then, self adaptive software and negotiation are discussed since these
research topics are related to the architecture we propose in this thesis. Finally, we
compare our approach to the solution from the reviewed literature.

2.1 Multi-Objective Optimization Problems

Decision making for single-objective optimization has been well-studied. The problem
becomes more difficult when one needs to consider several conflicting objectives. In
many cases, it is unlikely that the different objectives would be optimized by the same
choices of decision variables. Therefore, a trade-off between the objectives is needed
to ensure a satisfactory solution. This type of problem is known as either a multi-
objective or multi-criteria optimization problem (MOOP). Examples of multi-objective
optimization were seen as early as in the nineteenth-century economics [24, 83].

A multi-objective optimization problem has a number of objective functions which
are to be minimized or maximized. The problem usually has a number of constraints
which any feasible solution (including the optimal solution) must satisfy. In the fol-
lowing, the multi-objective optimization problem is stated in its general form:



Minimize/Maximize fm(x), m=12,..., M,
subject to gj(z) >0, i=1,2,...,J; (1)
hi(z) =0, k=1,2,...,K;
:U1L<xi<x§], 1=1,2,...,N
A solution z is a vector of N decision variables: x = (21, 2,...,2x5)". The last set of

constraints is called variable bounds. These restrict each decision variable z; to take a
value within a lower bound xF and an upper bound V. The values of decision variables
bounded by these limits constitute a decision space D. There are J inequality and K
equality constraints that are associated with the problem above. The terms hy(z) and
gj(x) are called constraint functions. Instead of “<” type inequality constraints, “>”
type inequality constraints can be used. If a value of z satisfies all of the (J + K)
constraints and all of the 2N variable bounds, it is called a feasible solution. There are
M objective functions F(z) = (fi(x), f2(X), ..., fu(z))T in the above equation. Each
objective function can be either minimized or maximized. Multi-objective optimization
is sometimes referred to as wvector optimization, because an M-tuple of objectives is
optimized. The space in which the objective vectors belong is called the objective
space.

Some of the well-known methods to solve multi-objective optimization problems
are,

o weighting objectives,

e c-constraint method,

e goal programminyg,

e hierarchical optimization,

e global criterion,

e distance functions,

® min-mazx optimum,

e and, trade-off methods [28, 25].

All of the classical methods listed above suggest a way to convert a multi-objective
optimization problem into a single-objective optimization problem. For such a conver-
sion, the methods above require more knowledge about the problem. For example, in
weighting objectives method, the individual weights should be known and assumed to
be constant.

Most multi-objective optimization methods use a concept called domination. In
these methods, two solutions are compared on the basis of whether one dominates the
other solution or not. In [20], domination is defined as the following:

Definition 2.1 (Better). A solution x? is better than solution x' for a given objective
function fp,, if
o fu(zh) < f(2?), when the objective is to mazimize fp,,

o fu(zh) > f(2?), when the objective is to minimize fp,



Definition 2.2 (Better solution). Between two solutions x' and x?, x' < x? denotes
that the solution x' is better than the solution x* on a particular objective.

Definition 2.3 (No worse than). Between two solutions ' and 2%, ' Ax? denotes

that the solution x* is no worse than the solution ' on a particular objective.

Definition 2.4 (Domination). A solution x! is said to dominate the other solution

22 (or mathematically ' < x2), if both conditions 1 and 2 are true:

1

1. The solution x' is no worse than z? in all objectives, or fm(x?) Afm(zt) for all

m=12,..., M.

2. The solution x' is better than x? in at least one objective (or mathematically

Im’ € {1,2,..., M} such that fo(z') < fr(2?)).

Definition 2.5 (Non-dominated Set). Among a set of solutions X, the non-dominated
set of solutions X' are those that are not dominated by any member of the set X.

When the set X is the entire search space, the resulting non-dominated set X’ € X
is called the Pareto optimal set.

Definition 2.6 (Globally Pareto-optimal Set). The non-dominated set of the entire
decision space D 1is the globally Pareto-optimal set.

In reaction to the weaknesses of the classical methods, a new set of methods like
genetic algorithms were designed. For a more complete list of optimization algorithms,
the reader can refer to [20].

However, as it is stated in [111, 41, 105], there are two major concerns or weak-
nesses in these methods. First weakness is that finding an optimal solution may not
be feasible with the given resources (e.g., computational power, time, cost, and knowl-
edge limitations, etc.). The second weakness is that optimization fails to describe how
decisions are often made in natural settings. Requirements for reliability, functionality,
and robustness in uncertain and changing environments can conflict with optimal per-
formance requirements. Therefore, new research areas emerged for exploring concepts
of decision making that do not depend on the principle of optimality.

2.2 Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) consists of a finite set of variables, each asso-
ciated with a domain of values, and a set of constraints. A solution is an assignment
of a value to each variable from its domain such that all the constraints are satisfied.
Typical constraint satisfaction problems are; (1) to determine whether a solution ex-
ists, (2) to find one or all solutions and (3) to find an optimal solution relative to a
given cost function. In a way, MOOP defined in Equation 1 is a special instance of
CSPs. The absence of a cost function makes the CSPs easier to solve than the classical
MOOPs.
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Two well known examples of constraint satisfaction problems are k-colorability and
SATisfiability. In k-colorability, the task is to color a given graph with &k colors, such
that any two adjacent nodes have different colors.

In SATisfiability, the task is to find the truth assignment to propositional variables
in boolean expressions in conjunctive-normal format (CNF), e.g. Equation 2, such that
all clauses in boolean expressions are satisfied. A clause is a boolean sum of variables
or their negations. A boolean expression in CNF is a product of many clauses.

(AVBVC)A(CVDVAYAN(DVE) (2)

The classical CSP framework has been introduced formally at the beginning of
the 70’s [74], and has been studied since ([76] gives a brief history of the studies on
CSP). The general constraint satisfaction problem is of high-complexity (NP-complete
or worse), which means that there is no efficient algorithm to solve it. Therefore, one
of the main research topics has been finding fast preprocessing algorithms that can
make the search for a solution efficient in important practical cases.

A widely used method for solving the CSP is backtracking. In this method, variables
are instantiated sequentially. As soon as all the variables relevant to a constraint are
instantiated, the validity of the constraint is checked. If a partial instantiation violates
any of the constraints, backtracking is performed to the most recently instantiated
variable that still has alternatives available. However, the backtracking method suffers
trashing ([37]); i.e., search in different parts of the space keeps failing for the same rea-
sons. Suppose the variables are instantiated in the order Vi, Va,... Vi, ...V}, ..., Vy.
Suppose further that the binary constraint between V; and Vj is such that for V; = a,
the binary constraint disallows any value of V. In the backtrack search tree, whenever
V; is instantiated to “a”, the search will fail while trying to instantiate V;. This failure
will be repeated for each possible combination that the variables Vi(i < k < j) can
take. The cause of this kind of trashing is referred as to as lack of arc consistency.

The following definitions from [61] can be helpful to understand arc-consistency:

Definition 2.7 (n-ary constraint). An n-ary constraint is a constraint in which the
number of variables relevant to the constraint is n or less.

Definition 2.8 (n-ary CSP). An n-ary CSP is a CSP, in which each constraint is an
n-ary constraint.

Definition 2.9 (Binary CSP). A binary CSP is a CSP, in which each constraint is
unary or binary.

It is possible to convert an n-ary CSP to another equivalent binary CSP [93]. A binary
CSP can be depicted by a constraint graph, in which each node (V;) represents a vari-
able and each arc (Arc(V;,V;)) represents a constraint between variables represented
by the end points of the arc. A unary constraint is represented by an arc originating
and terminating at the same node.

Definition 2.10 (Arc consistency). Arc(V;,Vj) is arc consistent if for every value x
in the current domain of V; there is some value y in the domain of V; such that V; = x
and V; = y is permitted by the binary constraint between V; and Vj.
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The concept of arc-consistency is directional; i.e., if an arc (V;, Vj) is consistent, then
it does not automatically mean that (V},V;) is also consistent. Trashing due to arc-
inconsistency can be avoided if before the search starts, each arc (V;,V;) of the con-
straint graph is made consistent.

Algorithms for eliminating arc-inconsistency are only a subset of preprocessing al-
gorithms that are used to increase the efficiency of the search algorithms. Some of such
preprocessing algorithms are described in [30, 68, 74, 33, 21, 34, 125].

Later, a new research field emerged that focused on finding classes of constraint sat-
isfaction problems where the preprocessing algorithms could find a solution by them-
selves. These classes of problems were referred to as “islands of tractability”. Some
identified classes are tree-structured problems, problems generated by graph grammars
[75], and problems with a certain relationship between their graph structure and their
level of consistency [22].

Sometimes a constraint satisfaction problem can be over-constrained. When there
is no solution that will satisfy all constraints, some of the constraints could be relaxed
to make the problem solvable. In such a case, the algorithm first needs to find that
the problem is unsolvable, and then the algorithm needs to determine the constraints
that can be relaxed. To determine the constraints that will be relaxed, the algorithm
can assign a level of importance to each constraint. Hierarchical CLP (HCLP) [10] is
such a CLP language and a CSP solving algorithm that satisfies the constraints by the
order of their importance.

The classical CSP model assumes a well-defined and stable constraint satisfaction
problem, and the main task is to find either one or all solutions. However, in [76],
Montanari and Rossi state that the constraints are dynamic in many real-life problems
and there is a need for more interactive constraint satisfaction systems, which should
both provide assistance in the modeling phase and support dynamic changes in the
constraints.

2.2.1 Phase Transitions

Comparing the performance of different search algorithms is very important. Some of
the measures are: the number of consistency checks, the number of nodes visited, CPU
time, the number of permanent search no-goods (the values that are eliminated from
variable domains permanently to establish the arc consistency), and the number of tem-
porary search no-goods (variable values that are discarded for a particular search step).
Theoretical evaluation of constraint satisfaction algorithms is accomplished primarily
by worst-case analysis or by dominance relationships [60].

All these measures, however, are useful only if the algorithm terminates. For NP-
complete problems a different approach is needed. In the past, untractable problems
were avoided. But, then it was recognized that for NP-complete problems, solutions
can be found, except for some input regions called “phase transitions”.

The idea of phase transitions had been first introduced in statistical physics. From
[49]: “Studies in statistical mechanics have shown that despite the apparent diversity
in the composition and underlying structure of these systems, phase transitions take
place with universal quantitative characteristics, independent of the detailed nature of
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the interactions between individual components. This means the singular behavior of
observables near the transition point is identical for many systems when appropriately
scaled, defining universality classes that only depend on the range of interaction of the
forces at play and the dimensionality of the problem. One of these common charac-
teristics is rapidly increasing correlation lengths between parts of the system as the
transition is approached, giving rise to a change from a disordered to an ordered state
and particularly large variances. It is these so-called critical phase transitions that are
most relevant to computational search”.

In [13], Cheeseman showed that for many NP-complete problems one or more “order
parameters” can be defined, and hard instances occur around particular critical values
of these order parameters (or invariants). Such critical values form a boundary that
separates the space of problems into two regions or phases. While one region is under-
constrained and easy to find a solution, the other region is over-constrained and very
unlikely to contain a solution. Really hard problems occur on the boundary between
these two regions, where the probability of finding a solution is low but not negligible.

Today, it is a normal approach to evaluate a proposed algorithm empirically on a
set of randomly generated instances taken from the relatively “hard” phase transition
region [103].

As Cheeseman indicated, there is a need to produce phase transition diagrams for
particular problem domains to help in identifying hard problems and predicting the
existence of solution, such as shown in [87]. Phase transitions in constraint satisfaction
problems were also studied by [85, 109, 38, 102, 50, 47, 48, 126]. At this point, the
challenge is to identify an order parameter for a particular problem domain.

2.3 Satisficing

In [106, 107, 108], Herbert Simon proposed that searching for an optimal solution
could be terminated when an option was identified that met the the decision maker’s
aspiration level-the point where the cost of further searching for alternatives exceeded
the expected benefit of continuing the search. Instead of using an optimal program,
which maximizes a pay-off function, he suggested to determine a threshold (aspiration
level) that the payoff must exceed. Then, the payoff requirement would be represented
as an additional inequality that needed to be satisfied. Aspiration level is borrowed
from psychology, where it represents a dynamic context-dependent criterion typically
acquired by experience. While Simon’s satisficing idea inspired many other theories,
the seemingly ad hoc nature of the determination of an aspiration level was criticized
as arbitrary [112]. In [129], the weaknesses and open questions of Simon’s definition of
satisficing were summarized as follows:

e The aspiration level tells the designer nothing about the problem solving tech-
nique.

e What is a “good enough” solution?
e How can a computer measure that?

e Should a satisfactory solution be reached directly or by iterative refinement?
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e How is the performance of a satisficing agent evaluated 7

Current approaches to satisficing are approximate reasoning, meta-reasoning, bounded
optimality, and a combination of the above. These approaches lead to different agent-
based designs and performances, while optimal meta-reasoning and bounded optimality
were favored over other approaches.

Papers are beginning to emerge regarding the problems of satisficing multiple-agent
decision making [104]. However, they are mainly interested in the algorithms, and little
have been done to formalize a multi-agent satisficing concept.

2.3.1 Approximate Reasoning

An approximate model of the problem domain can be used to find a solution. A solution
which is optimal to the simplified problem, is not necessarily optimal for the original
problem. Tractable models can be created by abstraction or by making simplifying
assumptions. Some of the work in this area were Bayesian belief networks, reasoning
with approxzimate theories [95] (or knowledge compilation as it is called in [101]), and
fuzzy logic.

2.3.2 Meta-Reasoning

Perfect Rationality (or Type I Rationality) is the classical notion of rationality in
economics and philosophy. A perfectly rational agent acts at every instant in such a
way as to maximize its expected utility, given the information it has acquired from the
environment. Since action selection requires significant computation time, perfectly
rational agents do not exist for non-trivial environments.

Meta-reasoning, also called Type II rationality by I. J. Good [40], utilizes some
sort of metalevel architecture. Metalevel architecture is a design concept for intelligent
agents that divides an agent into two (or more) levels. The first level, called object
level carries out the computations in the problem domain. The second level, called
metalevel, is a second decision making process whose application domain consists of
the object level computations themselves and the computational objects and states that
they affect. The basic idea is that object-level computations are actions with costs and
benefits. A rational metalevel selects computations according to their expected utility.

Anytime algorithms are used for a general class of meta-reasoning problems. Any-
time algorithms are the algorithms whose quality of results improve gradually as com-
putation time increases, hence they offer a tradeoff between resource consumption and
output quality [18, 51, 19]. There are two types of anytime algorithms, interruptible
and contract algorithms. An interruptible algorithm can be interrupted at any time
to produce results whose quality is described by its performance profile, where a per-
formance profile is a probabilistic description of the dependency of output quality on
computation time. In the contract algorithms the total time allocated for computation
needs to be known in advance. Therefore, interruptible algorithms are more flexible
than the contract algorithms. However, interruptible algorithms are more complicated
to construct. First, the designer has to ensure the interruptibility of the composed
system, or in other words, the designer has to ensure that the system as a whole can
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respond to immediate demands for output [97]. Second, a mechanism has to allocate
the available computation optimally among the components to maximize the through-
put and the total output quality. While the problem can be solved in time linear in
program size when the call graph of the components is tree-structured [98], the prob-
lem is NP-hard for the general case. Third, almost all metalevel reasoning systems to
date have adopted a myopic strategy—a greedy, depth-first search at the metalevel. Re-
search has been started to develop programming tools for composition and monitoring
of anytime algorithms [128, 42, 78§].

2.3.3 Bounded Optimality

A bounded optimal agent behaves as well as possible given its computational resources
[96]. The following definitions should help better understanding the concept of bounded
optimality. Let O be the set of percepts that the agent can observe at any instant, and
A be the set of possible actions the agent can carry out in the external world (including
the action of doing nothing). Then;

Definition 2.11 Agent function f : O* — A defines how an agent behaves under all
circumstances.

Assume Agent(l, M) is the agent function implemented by the program [ running
on machine M, Ly is the finite set of all programs that can be run on M, E is the
environment class in which the agent operates, and U is the performance measure which
evaluates the sequence of states through which the agent drives the actual environment.
Finally, V(f,E,U) denotes the expected value according to U obtained by any agent
function f in environment class E. Then;

Definition 2.12 (Bounded optimality) The bounded optimal program loy is defined
as
lopt = argmaxer,,,V (Agent(l, M), E,U) (3)

In [99], the steps to construct a provably bounded optimal agent are specified as
follows:

e Specify the properties of the environment in which actions will be taken.

e Specify a class of machines on which the programs are to be run.

e Specify a construction method.

e Prove that the construction method succeeds in building bounded optimal agents.

As Zilberstein points out, bounded optimality represents a well-defined optimization
problem. But, it actually shifts the intractable computational task from the agent to
its designer. While desirable, it is very hard to achieve. The approach described in [90]
is one of many approaches that combine multilevel reasoning and bounded optimality.
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2.3.4 Satisficing Equilibria

In terms of grammar, there are three degrees of comparison: (1)Superlative (or highest)
degree is founded on the notion of being “best” and requires rank-ordering preferences
for the consequences associated with the solutions [46]. (2) Positive (or lowest) degree,
is founded on the notion of being “good” and requires no explicit preference orderings
or comparisons. (3) Comparative degree (or paradigm), is founded on the notion of
being “better” and tries too fill the gap between the superlative and positive degrees.
Under the comparative paradigm, a set of utilities are used to provide rankings of
attributes for each solution.

In [112], Stirling and Goodrich introduced the notion of satisficing equilibria. Given
a set of solutions in a decision making problem, instead of making one global decision
with respect to the entire collection of solutions, the comparative paradigm requires a
separate local decision to be made for each solution.

Definition 2.13 (Satisficing equilibria) A solution is in a state of satisficing equilib-
rium if
S-1 The benefits derived from adopting it at least compensate for the costs incurred.

S-2 No other solution provides more benefits without also costing more, or costs less
without also providing less benefit.

Condition S-1 provides a weak notion of adequacy. Condition S-2 applies the dom-
ination principle to the cost-benefit framework to eliminate options that needlessly
sacrifice performance or incur expense. In general, the set of solutions in a state of
satisficing equilibrium will not be a singleton, and further elimination will be required
before action can be taken.

2.4 CSP Solution Methods and Tools

2.4.1 Constraint Logic Programming

Application developers took advantage of the constraint solving methods and used
constraint-related techniques successfully in applications like assignment problems,
CAD, decision-making systems, graphics, network management, robotics, scheduling,
typesetting, VLSI, and many others. This also led to the design and implementation
of a number of constraint-based programming languages [16]. SKETCHPAD [115],
CONSTRAINT [114], and ThingLab [8] were some of the earlier constraint program-
ming languages. Another group of programming language designers recognized that
logic programming was an appropriate language for stating combinatorial search prob-
lems: its relational form makes it easy to express constraints while its non-determinism
removes the need for programming a search procedure. However, traditional logic pro-
gramming languages (e.g., Prolog) could be very inefficient (i.e., trashing, repeated
failure due to the same reason or having to do redundant work during backtracking)
due to their passive use of constraints to test potential values instead of reducing the
search space actively [124]. Also, defining rich data structures and operations on these
structures were not possible. Earlier constraint logic programming (CLP) languages
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like CHIP [120], CLP(R) [53], Prolog 11, and Prolog III tried to preserve the advantages
of logic programming without being affected by its limitations. Later, the CLP scheme
[52] generalized the fundamental idea behind these constraint logic programming lan-
guages. The CLP scheme defined a family of programming languages based on their
semantic properties. The CLP scheme could be instantiated to produce a specific con-
straint logic programming language by defining a constraint system. The CLP scheme
was later generalized into the cc framework of concurrent constraint programming to
enable issues such as concurrency, control, and extensibility to be addressed at the
language level.

Today’s well known constraint programming languages, in addition to CHIP and
Prolog III [14], are Eclipse [26], OZ [100, 110, 71], CIAO [45], AKL [43], Prolog IV
[15], HAL [23] and Salsa [62]. Their constraint vocabulary and solvers perform beyond
traditional linear and non-linear constraints and support logical and global constraints.
0Z, CIAO, and AKL used concurrent constraint (CC) framework and implemented
distributed and concurrent systems. However, these languages are mostly targeting the
computer scientists and have weaker abstractions for algebraic and set manipulation.

Helios language [121] and Numerica [122] have been designed to solve non-linear
constraint systems using interval analysis techniques. CLP toolkits, like QOCA [70],
EaCL [118] and Ultraviolet [9], implemented graphical user interfaces to monitor the
progress of the constraint solver and provided the user with a mechanism to interact
with the solver at run-time.

2.4.2 Modelling Languages for CSP

Mathematical modelling languages are another kind of tools used in optimization.
Modelling languages like AMPL [31], GAMS [4], Claire [65, 66], CML [5], VISUAL
SOLVER [123] provide high-level algebraic and set notations to express mathematical
problems that can then be solved using the solvers presented above. In the case of
CML, the models written by this language were later translated to CHIP. There are
also a new set of optimization programming languages, like OPL [7], XPRESS-MP,
Modeler++ [73] and Salsa, which aim to unify modelling and constraint programming
languages.

Negotiation [35], machine learning [94] and constraint query languages [56, 12],
where CLP and Database technologies were integrated, are other techniques that have
been applied to constraint problems to help the user to model the system.

2.5 Active Software

In [88], Laddaga states that there are three principle interrelated problems facing the
software development:

e Escalating complexity of application functionality
e Insufficient robustness of the applications

e The need for autonomy
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To deal with these problems, Laddaga proposes an approach called active soft-
ware. A system that follows this approach must be responsible for its own robustness
and manage its own complexity. To accomplish this, the system must incorporate
the representations of its goals, methods, alternatives, and environment. The col-
lection of available technologies under active software are, self adaptive software (see
Section 2.5.1), negotiated coordination (see Section 2.5.2), tolerant software, and phys-
ically grounded software. Tolerant software is software that can tolerate non-critical
variations from nominal specification. Physically grounded software is software that
takes explicit account of its environment and other physical factors in the context of
embedded systems.

All these technologies incorporate the knowledge of requirements, designs, struc-
ture, I/O sources in the running software and can be used together.

2.5.1 Self Adaptive Software

Self-adaptive software is defined as [63]: “Self-adaptive software evaluates its own be-
havior and changes behavior when the evaluation indicates that it is not accomplishing
what the software is intended to do, or when better functionality or performance is
possible”. To accomplish constant performance evaluation and behavior change when
the performance drops below criteria, the runtime code needs to include; (1) descrip-
tions of the software goals, design and program structure, (2) a collection of alternative
implementations and algorithms.

Early research in self-adaptive software was concentrated on three paradigms: dy-
namic planning systems, self-controlling systems, and self-aware systems. Dynamic
planning systems first plan their actions [39, 79]. After evaluating and confirming the
effectiveness of their actions, they start the execution. Planning includes scheduling
and configuration of resources like hardware, communication capacity, and software
components.

In self-controlling systems [58, 59, 27, 36, 6] (see Section 4 for details), the runtime
software behaves like a plant, with inputs and outputs monitored and controlled by
separate monitoring and controlling units. Self-controlling systems support three levels
of control: feedback, adaptation, and reconfiguration.

In a self-aware software [117, 57, 11, 91], the key factor is self-modeling approach.
The application is built to contain knowledge of its operation, and it uses this knowledge
to evaluate performance, to configure and to adapt to changing circumstances.

In [64], Laddaga points at the following problems and unsolved issues in the existing
self-adaptive work:

e Evaluation of the functionality and the performance at runtime [72]

e Dynamism and software architecture representations for self-adaptive software:
more introspective languages, better debug-ability, better process descriptions,
better structural descriptions [84]

e Runtime performance while evaluating outcomes of computations and determin-
ing if expectations are met.
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e The effort that takes to create software capable of evaluating and reconfiguring
itself

e The lack of adequate metrics for degree of robustness and adaptation.
e Advances in computer hardware.

Two of the implementations of self-adaptive software are SAFER [1] and ASC [67].

2.5.2 Negotiated Coordination

Negotiation is defined as - a process by which a joint decision is made by two or
more parties. The parties first verbalise contradictory demands and then move towards
agreement by a process of concession making or search for new alternatives [86].

Definition 2.14 Negotiated coordination is the coordination of independent software
entities via mutual rational agreement on exchange conditions [88].

The advantages of using negotiation among agents in a software system are that
it is inherently distributed, multi-dimensional, and robust against the changes in the
environment.

Negotiated coordination is another approach covered under the active software
paradigm. Government and research organizations have a number of programs to
support the research for negotiated coordination in software. One of these programs is
called the ANTs (Autonomous Negotiating Teams) program and sponsored by AFRL
and DARPA. The objective of ANTs program [3] is to provide technology that enables
the development of information systems that autonomously negotiate the assignment
and customization of resources to tasks in real-time, distributed allocation systems.
Under the ANTSs program, a series of research projects started:

e CAMERA, stands for Coordination and Management of Environments for Re-
sponsive Agents, is a joint project executed by ISI/University of Southern Cali-
fornia and Vanderbilt University. Its functionality is scheduling of pilots against
tasks and planes, self-monitoring and reporting of the negotiating agents and
self-correcting negotiations that will force the agents work collectively.

e ATTEND (Analytical Tools To Evaluate Negotiation Difficulty) project maps the
resource management problem that the system is trying to solve by negotiations
into a CSP. ATTEND uses ideas like satisficing decision making, control over real-
time performance, complexity reduction via phase-transition aware partitioning
of task space. Management of resource contention facilitated by SAT encoding of
complex allocation problems.

e MARBLES approach [32] is a definition and comparison of cooperative negotia-
tion schemes for distributed resource allocation. It assigns values (or prices) to
the tasks and tasks with higher values are allocated with resources first.

e DEALMAKER utilized agents that select the best sources of supply to fill orders
[116]. It used a flexible XML-based representation for the contracts and had an
interactive user interface to enter contracts online and enter rules to govern the
contracts.
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e The MICANTS, stands for Model Integrated Computing and Autonomous Nego-
tiating Teams for Autonomous Logistics, project is executed by Vanderbilt Uni-
versity. The project seeks to develop efficient negotiation protocols for distributed
problem solving in the logistics domain.

e MAPLANT (Maintenance Planning Tool) project [119] is a part of MICANTS
project. The main goal in the project is to create a schedule for airplane main-
tenance activity. First, scheduling problem was transformed to a finite domain
constraint problem and then the CSP code was manually written in OZ. Input
data is provided in XML format. Like DEALMAKER, MAPLANT has a graph-
ical user interface that helps the user interact with the search process.

e ADEPT multi-agent system [54]: The motivation behind the Advanced Decision
Environment for Process Tasks (ADEPT) project is that an agent based approach
should be suitable for implementing systems to manage business processes. The
ADEPT system and agent architectures are designed to ensure maximum flexi-
bility to adapt as the business process changes. ADEPT provides a method for
designing agent oriented business process management system, and agent imple-
mentation that is suitable for operation within such a system, and a technology for
solving the problem of integrating an enterprise in the performance of a business
process [55].

Other current research on negotiation can be found [113, 35, 127, 17, 77].

2.6 Negotiation Models
2.6.1 Bilateral Negotiation Model

The model, discussed in this section, is the two parties, multiple issues value scoring
model defined in [89]. That is a model for bilateral negotiations about a set of quan-
titative variables. A negotiation thread is a sequence of offers and counter-offers in a
two-party negotiation. Offers and counter-offers are generated by linear combinations
of simple functions, called tactics. Tactics generate an offer and counter-offer consider-
ing a single criterion (i.e., time, resources). To achieve flexibility in negotiation, agents
may wish to change their ratings of the importance of the different criteria, therefore
their tactics vary over time. Strategy is the term used to denote the way in which an
agent changes the weights of tactics over time. Strategies combine tactics depending
on the negotiation history.

Let i € {a,b} represent the negotiating agents and j € {1,---,n} the issues under
negotiation. Let x; € [min;, max;] be a value for issue j. Each agent has a scoring
function Vji : [minj, max;] — [0,1] that gives the score agent i assigns to a value of
issue j in the range of acceptable values. For convenience, scores are kept in the in-
terval [0,1]. wj- is the importance of issue j for agent ¢. The weights for all agents are
normalized, i.e. >3 <<, wé =1, for all ¢ in {a,b}. An agent’s scoring function for a
contract - that is for a value = (z1,- -+, xy,), is defined as:
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Vifz) = Y wiVi(z;) (4)

1<j<n

2.6.2 A Service-oriented Negotiation Model

In service-oriented negotiations, the agents can undertake two possible roles that are
in conflict, the client and the server. Roman letters c, ¢, co, - - - are used to represent
client agents and s, s, S9, - - - are used for server agents.

The negotiating agents may have conflicting interests. While a client agent wants
a service as soon as possible with a low price, the server agent desires a higher price.
Besides, the server agent’s schedule may not allow an early service date. Therefore,
in terms of negotiation values, the scoring functions of the client agent and the server
agent show opposite tendencies; for issue j, if x;,y; € [min;, max;] and x; < y;, then
Vix;) < Vi(y;) <= Viy;) < Vi),

Once the agents have determined the set of variables over which they will negotiate,

the negotiation process between two agents consists of an alternate succession of offers
and counter offers of values for those variables. This continues until an offer or a
counter offer is accepted or an agent terminates negotiation.
In the following definitions, %, represents the value of the offer proposed by agent a
to agent b, and xfl_,b[j] represents the value of issue j proposed from a to b at time t¢.
Definition 2.15 (Negotiation thread). A negotiation thread between agents a,b €
Agents, at time t € Time, noted x',_, or x}_ ., is any finite sequence of the form

t1 1) tn ’
{xd1—>61 ? de—)@Q? T :Cdn_,en} U)heT’e.
1. e; = d;y1, proposals alternate between both agents,

.ty <ty if k <1, ordered over time,
. d;,e; € {a,b}, the thread contains only proposals between agents a and b,

2
3
4. d; # e;, the proposals are between agents, and
5

. @l € [min?i,mawgli] or is one of {accept,reject}.

i—ei

Assume a:f);a is the contract that agent a would offer to agent b at the time of the
interpretation t, and t%,... is a constant that represents the time which agent a must
have completed the negotiation.

Definition 2.16 (Offer). The interpretation by agent a of an offer x} . sent at time
t <t', can be formalized as follows:

reject, Ift' >t% .

1°t,xb_,) =< accept, IfVe(xh ) >Vt ,) (5)

, a—b
zt ., otherwise

In order to prepare a counter offer the following families of tactics are defined [29]:
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Time-dependent If an agent has a time deadline by which an agreement must be
reached, these tactics model the fact that the agent is likely to concede more
rapidly as the deadline approaches.

Resource-dependent These tactics model the pressure in reaching an agreement
that the limited resources (e.g. money, labor, raw material, or any other) and the
environment (e.g. number of clients, number of servers, or economic parameters)
impose upon the agent’s behavior.

Imitative In situations in which the agent is not under a great pressure to reach
an agreement, it may choose to use imitative tactics that protect it from being
exploited by other agents. In this case the counter offer depends on the behavior
of the negotiation opponent.
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3 Analysis of Candidate Components

The kind of problems that we try to solve in this thesis are multi-objective optimization
problems. In the following, an analysis of the candidate solutions described in Section
2 is provided. The goal is to come up with a solution that satisfies all the requirements
of the problem stated in Section 1.

The first candidate for a component of the solution was the conversion of a multi-
objective optimization problem into a single-objective optimization problem by com-
bining all the objective functions into one. This was described in Section 2.1. An
example of the combination of the functions into one is assigning weights to each ob-
jective and then adding the weighted values of the objective functions. Therefore,
this combination method is based on some additional information about the problem.
Other methods, similarly as this one, also use some additional information about the
problem. Our problem formulation described in Section 1 does not include this kind
of information. We do not assume that this kind of information is available. Conse-
quently, this approach cannot be used in the solution to our problem.

The next candidate is the satisficing approach. However, as we stated in Section 2.3,
this approach is based on the assumption that an “aspiration level” for each objective
is known. Again, we don’t have this kind of an assumption in our problem formula-
tion. Therefore, a straight forward application of the satisficing approach cannot be
used. Instead, we propose to establish aspiration levels dynamically, using negotiated
coordination 2.5.2. To achieve this, we propose to use an agent based approach in
which each objective will be represented by an agent and then the agents will negoti-
ate solutions. Each agent will use a separate CSP solver to find a solution that will
satisfice its objective (cf. [54]). Like the MAPLANT project [119], we will transform
each objective and the related constraints to a separate constraint satisfaction problem
and use a CSP solver to solve the problem. The aspiration level will be an explicit
parameter in our system. The value of the aspiration level achieved in one negotiation
will be used as an initial value in the next negotiation.

The ATTEND project [2] also utilizes the satisficing approach. Their system mon-
itors the performance of the negotiation to avoid phase transition regions. However,
the problem domain for the ATTEND project was limited to SAT problems. Conse-
quently, the ATTEND system monitors the invariants specific to the SAT problem,
i.e., the ratio of the number of clauses to the number of variables. Like the ATTEND
project, we use specialized components to monitor the performance of the CSP solvers
and to avoid phase transition regions. But, we do not limit our problem domain to
SAT and thus we cannot use the same kind of invariants. Instead, one of our research
goals is to find invariants specific to our problem domain and then formulate a more
general pattern for invariants applicable to any multi-objective optimization problem.

The architecture that we use for the software agents is a metalevel architecture (see
Section 2.3.2). This architecture is called Self-Controlling Software Architecture [58].
In its full implementation it includes three metalevels (also called loops): the feedback
loop, the adaptation loop and the re-configuration loop. In this research we use only
the first two metalevels. The two metalevel loops are implemented in each agent.

One of our goals stated in Section 1 was to choose a language for specifying multi-
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objective optimization problems. One possibility for us was to use CML [5]. For
this language, there exist translation rules that could be used for translating a model
expressed in CML to the constraint logic programming language CHIP [120]. The ex-
pressiveness of this language is, however, limited; it is not possible to express structural
aspects of the user’s view of the problem formulation. Since this feature is needed for
our system, we have to use a more expressive language. We propose to use UML/OCL
for this purpose. Our solution further extends the idea of tramslation and provides
an automated way of translating the problem represented in a high-level modeling
language to the CSP programming language. Automated translation hides the imple-
mentation details related to the CSP programming language and allows to change the
target CSP solver with minimum effort.

Other modeling language candidates might include Claire [65, 66] and VISUAL
SOLVER [123]. While these languages have more expressive power than CML, as well
a graphical tool support, the problem is that these tools are closed proprietary systems.
On the other hand, UML, which is a de-facto standard language for specifying software
specifications, provides a standardized XMI output, which then can be used as input
to a CSP code generator. Using such a standard modeling language allows us to utilize
off-the-shelf products like Rational Rose, Rhapsody or any graphical UML tool.
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4

Proposed Solution

To achieve the goals outlined in the previous sections, we will implement an experimen-
tal framework (see Figure 1) consisting of the solution elements described in Section
3. The framework will include a set of tools that will automate the synthesis of a
satisficing program from specifications such that the program can: (1) monitor and
control its complexity, (2) adapt to parametric changes in the constraints.

The following tools will be implemented:

An ontology for multi-objective optimization. The ontology will be implemented
in UML/OCL and will support the user in the specification of optimization prob-
lems (see Appendix A and B for details).

A parser that converts constraints expressed in OCL to an intermediate XML
form.

A generic code generator that converts the constraints expressed in the interme-
diate XML form and the structural constraints in XMI (from the UML tool) to
a target CSP programming language (see Appendix D for details).

Code generator translation rules for the Oz target CSP language.
Templates for creating software agents.

An instantiation of the Self-Controlling Software Architecture (SCSA). This part
will be semi-automatic. A template of SCSA will be developed and used to in-
tegrate the agents. Algorithms for each component of SCSA will be developed.
Simple negotiation algorithms will be developed. For each instantiation the tem-
plates will have to be customized and then compiled. See Appendix C for details.

Phase transition invariants will be defined. Experiments will be performed to
assess the appropriateness of the invariants for defining phase transition regions.
The invariants will be used in the instantiation of the SCSA described above (see
Appendix G.2 for an experiment on phase transition invariants).
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Figure 1: Overview of the proposed solution

5 Contributions

Phase transition invariants as indications of complexity of multi-objective
optimization

Phase transition invariants have been used as a measure of complexity of Constraint
Satisfaction Problems. We will show that phase transition invariants can also be used
as indicators of complexity in multi-objective optimization problems at search time.
We will demonstrate that a synthesized CSP program can control its complexity by
monitoring the search for a satisficing solution with respect to these phase transition
invariants at execution time. We will investigate the phase transition phenomenon to
specify a method to identify phase transition invariants and the related computation
intensive critical regions for a given CSP domain. We will specify methods (relaxing
constraints, changing parameters in constraints) for the synthesized CSP programs to
avoid these critical regions.
bf Objective based agentification of multi-objective optimization problems

One of the proposed solution components of our problem will be using agents to
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establish aspiration levels of particular objective functions. We will show that this can
be solved by creating one agent for each objective function and then using negotiation
to come with the values of particular aspiration levels. We will develop a method to
create such software agents. We will show that mapping multi-objective optimization
problems to an this kind of agent-based architecture can help avoiding computation
intensive critical regions, while still achieving good results for each of the optimization
criteria.
Self-Controlling Software Architecture as a way of controlling complexity
of CSP

One of the main objective of this thesis will be to show that the Self-Controlling
Software Architecture can be used to both control the complexity of computation and
to adapt to parametric changes in the specifications of multi-objective optimization
problems. The SCSA will use its feedback loop mechanisms to monitor the phase
transition invariants as the search for a satisficing solution progresses, as well as to
control the agent’s negotiation so that such computation intensive regions are avoided.
The SCSA will use its adaptation loop to control the appropriateness of a specific
controller to a given version (parameters) of the multi-objective optimization problem.
Ontology-based support of specification of multi-objective optimization prob-
lems

One of our goals is to replace the programming in a CSP language with a more
user-friendly development of a specification in a graphical language. Towards this
goal, we propose to use UML, a graphics oriented specification language. However,
the graphical part of UML is not sufficient to express many constraints. Therefore, we
propose to use OCL, the UML’s constraint language that can be used to extend the
capabilities of UML. However, since OCL is a constraint language, the development
of specifications in this language is a tedious process. Therefore, to make the use of
OCL more user-friendly we will propose an ontology that will support the specifier
in the process of developing specifications of objective functions and constraints of
multi-objective optimization problems. The ontology itself will be expressed in OCL.
It will contain a selection of problems typically encoutered in the specification of muli-
objective optimization problems. Additionally, the ontology will also include constructs
to support the generation of software agents.
Proof-of-concept of automatic CSP code generation for multi-objective op-
timization problems

We will show a proof-of-concept of automatic CSP code generation for multi-
objective optimization problems. We will specify a generic method that will support
the generation of different target CSP programming languages and we will demonstrate
the execution of the code generator by using OZ as the target CSP programming lan-
guage.
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6 Method Verification and Demonstration

To evaluate the approach, an experimental system will be implemented and tested on
two scenarios - a fixture design scenario and an order negotiation scenario. Problem
formulations will be specified using the UML/OCL representation. The formulations
will be automatically translated to the selected Constraint Satisfaction Problem (CSP)
language and then used by the system to find satisficing solutions. The goal will be to
provide a proof-of-concept of developing such a self-controlling satisficing program that
(1) is applicable to various multi-objective optimization problems, (2) has the ability to
control its own complexity, and (3) can adapt to parametric changes in the constraints.
The first requirement will be satisfied by demonstrating that the same system can be
used in two different domains. In both scenarios, the system will be tested on both
hard and easy regions in order to show its ability to control its own complexity. The
phase transition phenomenon will be investigated, i.e., a model for phase transition
(complexity as a function of the parameter characterizing the amount of change) will
be developed and then used by the proposed system. The adaptability of the system
will be tested by changing parameters in the constraints during the system operation.
The definition of a parameter to measure the adaptability will be part of this research.
Another aspect of the evaluation of the system is the quality of the solutions to the
multi-objective optimization problems it finds. Towards this aim the solutions will be
compared to known benchmark approaches.

6.1 Fixture Design Problem

The first experimental multi-objective optimization scenario is a design problem of
finding connections (channel layout) between one or more integrated circuit board(s)
(or Unit Under Test - UUT) and a functional board tester (FBT) (see Section G for
details). More specifically, the goal is to find a mapping between the edge connector
pins of the UUT and the digital channels of the FBT while keeping the cost of the
system low by using a small number of assets (channels).

To formalize the objective functions and the constraint we need to introduce the
following notation.

e P - the set of all UUT pins, p € P
e Np - the cardinality of the set P. It is constant for this optimization problem.

e (' - the set of all channels, ¢ € C, in the tester system. It is an optimization
variable.

e CC - the set of all channel cards in the system.

e Cont: C — CC - the containment function. It maps a channel ¢ to its container
channel card, cc € CC.

o ContU : 2¢ — 26C _ It maps a set of channels to their container channel cards if
the channels are assigned to any pins.

e R - the set of all possible pin requirements, r € R.
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e Rec: P — 2% - the requirements function. It assigns the subset of requirements
for each pin.

e CAP - the set of all possible channel capabilities. A capability can be digital
measurement, digital sourcing, analog measurement, or analog sourcing.

o Cap : C — 2647 _ the capability function that assigns a set of capabilities to
each channel c.

e PC: P — CU{cpu} - channel assignment function. It assigns a channel to a
UUT pin. This is an optimization variable.

® fmap : R — CAP - a function that maps the pin requirements to channel capa-
bilities. The function is m — to — 1.

e card: Set — N - cardinality function that returns the size of a given set.
e Nccyax - the maximum number of channel cards that can be inserted in a FBT.

® Cpqp - null assignment for a UUT pin. This indicates that a channel has not been
assigned to the UUT pin.

Objective 1: Minimize the number of UUT pins that are NOT assigned to
any channel.

Minimize Npy = card(PC~(caun)) (6)
5.t Vp,p' € P: p#p = PC(p) # PC(p) (7)
Vp € P,Vr € Rec(p) : fmap(r) € Cap(PC(p)) (8)

Objective 2: Minimize the number of total channel cards used in the system.

Minimize ~ N¢c¢ = card(ContU(C)) 9)
s.t. Nce < Necyax (10)
card(PC(P) — ¢puu) < Np (11)

A complete listing of OCL representation of the functions, the constraints and the
objective functions can be found in Appendix G.3.

6.1.1 Problem-Specific Metrics

For the Fixture Design experiment, brute force search will be used as the baseline
algorithm. The metrics that will be used in the comparison are:

e Computation time vs. pin requirements (and constraints) change

e Response time for getting an answer that a solution exists (there is a fixture
mapping between this UUT and the tester configuration that satisfies all the pin
requirements)
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e Percentage of UUT pins matched as pin requirements change

The following criteria will be used to determine success:
e Computation time and response time will be less than the baseline algorithm.

e The percentage of UUT pins matched will be higher if a 100% match is impossible.

6.2 Order Negotiation System

The second experimental system is an order negotiation system for a marketing or
sales department of a manufacturing company. The agents of the manufacturer and
the customers have different objectives. The objective of the manufacturer agents is
to fill the orders coming from the customers according to the profitability and the
constraints forced by the labor and raw material levels. The objective of the customer
agents is to minimize the purchase price of a product. The constraints of the customer
are about the price, the quantity, and the delivery time of the product. Appendix H
specifies the objective functions for both the manufacturer and customer agents.

For the order negotiation experiment, linear programming will be used as the base-
line algorithm. The metrics that will be used in the comparison are:

e Average negotiation time (whether an agreement is reached or not-time can be
replaced by the number of offers)

e Percentage of negotiations ended with an agreement

e Percentage of change in the customers offer vs. percentage of change in the
manufacturers offer: .
AXe X4 —XP|

= 12
AXar X - X "

The following criteria will be used to determine success:

e Average negotiation time will be shorter.

e Percentage of negotiations ended with agreement will be higher.
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7 Plan
7.1 Completed Tasks

e Formalization of a software agent described (class definitions, interfaces) in UML
e Implementation of the OCL parser

e Design of the schema for OCLML

e Design of the software agents

e Design of the negotiation algorithm

e Formalization of the Fixture Design Experiment (goals, constraints)

e Formalization of the Order Negotiation Experiment (goals and constraints)
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7.2 Schedule for remaining tasks

’ Task H Effort(days) H Complete by ‘
Complete the proposal presentation 5 Sep, 12
Implement the generic code generator 5 Sep, 19
Specify the ontology for expressing goals and 10 Oct, 3
constraints
Implement the translation rules file (XSL file) 20 Oct, 31
for OZ
Implement the template code for agents in OZ 15 Nov, 21
Implement the QoS module for agents in OZ 10 Dec, 5
Express the goals and constraints of Fixture 2 Dec, 8
Design experiment in OCL
Identify the phase transition invariants and 10 Dec, 23
regions for Fixture Design experiment
Implement the benchmark program for Fix- 10 Jan, 6
ture Design experiment
Execute the Fixture Design experiment 5 Jan, 13
Express the goals and constraints of Order Ne- 2 Jan, 15
gotiation experiment in OCL
Identify the phase transition invariants and 10 Jan, 29
regions for Order Negotiation experiment
Implement the benchmark program for Order 10 Feb, 12
Negotiation experiment
Execute the Order Negotiation experiment 5 Feb, 19
Analyze the results of the experiments 10 Mar, 4
Analyze and specify the methodology used in 20 Apr, 1
the determination of phase transition invari-
ants
Update the Literature Review section of the 5 Apr, 8
thesis
Write the remaining sections of the thesis 15 Apr, 29
Send the thesis for review and incorporate the 10 May, 13
feedback
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A Defining Structural Constraints in UML

Domain specific knowledge about the problem area is expressed in this step. Class
Diagrams, as defined in the Unified Modelling Language (UML) Specification [82], are
used to define structural constraints of the problem. Today, there are many commer-
cial graphical UML tools available to create these diagrams. Rational Rose, I-Logix
Rhapsody, Project Technology’s BridgePoint and Kennedy-Carter’s iUML are some of
the well-known and widely used tools. These tools can export the information captured
in the class diagrams in XML Metadata Interchange (XMI) form [81]. XMI specifi-
cation supports the interchange of any kind of metadata that can be expressed using
the Meta Object Facility (MOF) specification, including both model and metamodel
information. MOF is the OMG’s adopted technology for defining metadata and rep-
resenting it as CORBA (Common Object Request Broker Architecture) [80] objects.

Bank
accountNumber : Integer

0..1
customer
manager managedCompanies
Person Company
*
firstName‘: Str_ing 0. name : String
lastName : String numberOfEmployees : Integer
isMarried : Boolean
isUnemployed : Boolean employee employer stockPrice() : Real
age : Integer
0..* 0..*
income(Date) : Integer

Figure 2: UML Class diagram for bank example

The following is a part of XMI file that is generated for the class diagram in Figure 2.

<?xml version="1.0" encoding="UTF-8"7> <XMI xmi.version="1.0">
<XMI.header>
<XMI.documentation>
<XMI.exporter>Novosoft UML Library</XMI.exporter>
<XMI.exporterVersion>0.4.19</XMI.exporterVersion>
</XMI.documentation>
<XMI.metamodel xmi.name="UML" xmi.version="1.3"/>
</XMI.header>
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<XMI.content>
<Model_Management .Model xmi.id="xmi.1" xmi.uuid="-8000">
<Foundation.Core.ModelElement.name>BankExample
</Foundation.Core.ModelElement .name>
<Foundation.Core.ModelElement.isSpecification xmi.value="false"/>
<Foundation.Core.GeneralizableElement.isRoot xmi.value="false"/>
<Foundation.Core.GeneralizableElement.isLeaf xmi.value="false"/>
<Foundation.Core.GeneralizableElement.isAbstract xmi.value="false"/>
<Foundation.Core.Namespace.ownedElement>
<Foundation.Core.Class xmi.id="xmi.2" xmi.uuid="-7ffe">
<Foundation.Core.ModelElement .name>Bank
</Foundation.Core.ModelElement .name>
<Foundation.Core.ModelElement.isSpecification xmi.value="false"/>
<Foundation.Core.GeneralizableElement.isRoot xmi.value="false"/>
<Foundation.Core.GeneralizableElement.isLeaf xmi.value="false"/>
<Foundation.Core.GeneralizableElement.isAbstract xmi.value="false"/>
<Foundation.Core.Class.isActive xmi.value="false"/>
<Foundation.Core.ModelElement .namespace>
<Foundation.Core.Namespace xmi.idref="xmi.1"/>
</Foundation.Core.ModelElement .namespace>
<Foundation.Core.Classifier.feature>
<Foundation.Core.Attribute xmi.id="xmi.3" xmi.uuid="-7ffc">
<Foundation.Core.ModelElement .name>accountNumber
</Foundation.Core.ModelElement .name>
<Foundation.Core.ModelElement.visibility xmi.value="public"/>
<Foundation.Core.Feature.ownerScope xmi.value="instance"/>

</Foundation.Core.Attribute>
</Foundation.Core.Classifier.feature>
</Foundation.Core.Class>

</Foundation.Core.Namespace.ownedElement>
</Model_Management .Model>
</XMI.content>
</XMI>

Models saved in machine readable XMI form will be input to the OCL Translator
(see Appendix D). In the current form of XMI, there is no standard way to store
the actions (an action language) that happen in different states of dynamic objects.
Defining an action language is outside the scope of this thesis. Therefore, if we need
to express state actions in any experiments, we will directly program in the target
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language.

B Defining Goals and Constraints in OCL

As it is described in the Object Constraint Language (OCL) Specification, “In object-
oriented modelling, a graphical model, like a class model, is not enough for a precise
and unambiguous specification. There is a need to describe additional constraints
about the objects in the model”. We have used the March 2003 version of the OCL
Specification which is a part of UML version 1.5. We considered to use OCL for a
number of different purposes:

e To specify invariants on classes and types in the class model
e To describe pre- and post conditions on operations and methods
e To specify constraints on operations

Standard OCL package comes with pre-defined types (basic or complex) and oper-
ations on these types. Collections types like Set, Bag, and Sequence and set operations,
like forAll, exists, union, intersection are part of the standard OCL package.

In this thesis, we will extend the pre-defined types and operations in OCL to cover
the concepts like,

e Minimize, maximize functions
e Templates for offer and counter-offer concepts in negotiation
e Phase Transition invariants

e Phase Transition boundaries

C Architecture for software agents

In the proposed solution, a separate software agent represents each criteria in the multi-
objective optimization problem. “Agent” is a theoretical concept from Al. The concept
agent is used as Maes has defined in [69]: “An agent is a computational system which
is long-lived, has goals, sensors and effectors, decides autonomously which actions to
take in the current situation to maximize the progress towards its changing goals”.
The main goals in using software agents are to de-centralize the computation and to
improve the performance in search by utilizing the adaptive and autonomous nature
of agents.

The architecture that is used in the software agents is a variation of the self-
controlling software model. Self-controlling software model [58] regards the software
system as a plant to be controlled and models the behavior of the plant and the envi-
ronment as a dynamic system. A dynamic system is a physical system with rules for
how its state changes or evolves from one moment of time to the next. The essence
of a dynamic system is that its output depends on the systems’ state. Self-controlling
software identifies measurable inputs to the plant and classifies them as control inputs,
which control the plant’s behavior, or disturbances, which alter the plant’s behavior

35



Feedback

Goal
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Reconfiguration
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Reconfiguration - IS

Figure 3: Self-controlling software model

unpredictably. Self-controlling software includes a controller subsystem for changing
the values of the control inputs to the plant and adds, if necessary, a quality of service
(QoS) subsystem for computing feedback. The controller uses this feedback to control
the plant. Self-controlling software model includes the following three loops, each of
which represents a different timescale for control activity (see Figure 3):

Feedback loop The controller sets parameters for the plant based on the goal and
feedback received from the QoS subsystem.

Adaptation loop The evaluator evaluates the behavior and performance to deter-
mine whether the plants model is appropriate.

Reconfiguration loop It involves structural changes in the plant model, QoS subsys-
tem, evaluator, controller, controller designer, goal, or even plant. Reconfigurer
stays unchanged. Uses a specification database for decision making and a com-
ponent database to assemble various system elements.
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The premise behind mapping the concepts of control theory to software engineering
is to use the concepts and tools developed in control theory — for example, controlla-
bility, stability, and sensitivity analysis (see Appendix C for a detailed description of
the architecture used for the software agents in the proposed system).

Other Agent
Negotiation
Threac
Agent
Reconfigurer Negotiation [~ 1 905
| Thread |
goal 1 startTime 1 | Module
endTime 1
* | deadline :
score 1 1 action()
1
B 5 Knowledge
’ : T : 0.1| Source
Knowled 1 0.1| Model
ourcs Ten K> | Estimator
Source Template| 1 1
alpha action() 1 . ppr—
beta
tactic 1 1 < ]
cumulativeScore
CSP Solver (Plant)
0.1 0.1
Controller Controller
action() Designer
action() :
action()

Figure 4: Agent Architecture

A software agent in our proposed system contains the following components (see Figure
4):

Reconfigurer It maintains the goal or optimization criteria. The reconfigurer instan-
tiates and schedules a Knowledge Source(KS) when the agent needs to process
an input or to communicate with another agent. The reconfigurer uses Knowl-
edge Source Templates to instantiate new KSs. In addition to the creation of
KSs, the reconfigurer instantiates Negotiation Threads between the current agent
and other agents. After the negotiation is completed, the reconfigurer records
the negotiation results and updates the algorithmic parameters of KS Templates
according to their performance.
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Knowledge Sources Knowledge Source (KS) is an Al concept used in Blackboard
Architectures [44]. A KS perform the main functionality of the agent. An agent
may utilize many algorithms to solve the same problem, and different algorithms
are contained in different KSs. Adaptation loop occurs in the KSs. Each KS
contains the following sub-components:

e Plant: The constraints that are translated to the language supported by the
selected CSP Solver (in our experiments OZ) is executed in this component.

e Quality of Service (QoS) Module: QoS Module monitors phase transi-
tion invariants and detects the cases, where the values of these invariants fall
into the computation intensive critical regions. Once such a region is entered
the agent relaxes both performance criteria and constraints through negoti-
ation. Phase transition order parameters (or invariants) will be determined
(see Section 2.2.1 for brief explanation) and critical regions will be calculated
empirically at design time.

e Controller: (Optional) Same as the Controller in self-controlling software
model.

e Controller Designer: (Optional) Same as Controller Designer in self-
controlling software model.

e Model Estimator (Optional) Same as Evaluator in self-controlling software
model.

Negotiation Thread A negotiation thread supports and monitors the negotiation
and the communication between the agent it belongs to and the negotiation
thread of another agent. Each agent creates and commits its own negotiation
thread object for the communication. The negotiation threads can be used as a
communication link or interface between different platforms.

Knowledge Source Templates These templates either hold different algorithms or
the same algorithms with different parameters. They are used to create new KSs.
They are stored by the reconfigurer. These templates serve as the specification
database in self-controlling software model.

Negotiation is used to determine the aspiration levels of the objective functions of
each software agent. Specifically, the issues negotiated are the decision variables of
the optimization problems (see Appendix E for the details of the mechanism). During
negotiation, the decision variables cannot take a value outside their feasible solution
set. The goal of the negotiation is to find a solution from the non-dominated set as it
is defined in Definition 2.5.

D Translation of goals and constraints from UML
/ OCL to OZ

Translation of goals and constraints to OZ (or any other CSP programming language)
is done in two steps (See Figure 6. The OCL translator is made up of two separate com-
ponents: the OCL parser and the generic CSP code generator. First, the OCL parser
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parses the OCL file and converts the domain-specific constraints into an intermediate
XML form, which we will call OCL Markup Language (OCLML). The following is an
example for a constraint written in OCL:

package Bank

context c:Company
inv: c.numberOfEmployees > 50

endpackage

And, the following is the same constraint after parsed and transformed to OCLML:

<0CLFile>
<package Value="Bank">
<constraint>
<classifierContext Value="c">
<secondaryName Value="Company"/>
</classifierContext>
<INVExpression Value="">
<binaryOperator Operation="GREATER">
<leftOperand>
<unaryOperator Operation="">
<postfixExpression>
<primaryExpression>
<propertyCall Value="c"/>
</primaryExpression>
<propertyCallList>
<propertyCall Value="numberOfEmployees"
Type="DOT"/>
</propertyCalllList>
</postfixExpression>
</unaryOperator>
</leftOperand>
<rightOperand>
<unaryOperator Operation="">
<postfixExpression>
<primaryExpression>
<oclObject Value="50"/>
</primaryExpression>
</postfixExpression>
</unaryOperator>
</right0Operand>
</binaryQOperator>
</INVExpression>
</constraint>
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</package>
</0CLFile>

C:\Yonet\OCLParse\OCLTranslatoOCLML.xsd 05/28/03 21:53:27

classifierContext

o=
operationContext

[octrie - (o s £ (o

1..oo

Figure 5: Schema for OCLML

A schema is provided to validate the intermediate files in OCLML (See Figure 5).
The complete schema for OCLML can be found at Appendix F. After the constraints
that are expressed in OCL are parsed, the generic CSP code generator translates the
constraints in XML form to the target CSP programming language using a translation
rules file for that language.

The separation of the parser from the code generator and the use of translation rules
file makes the OCL Translator flexible enough to generate CSP code for different target
CSP programming languages. In this thesis, for the demonstration, the translation
rules file for OZ will be provided.

In this thesis, we selected OZ as the target CSP programming language and CSP
solver, since it;

e Supports concurrency.
e Has an open architecture.

e Supports integration with other programs written in different programming lan-
guages, e.g. C, C++.

e Provides a run-time debugging environment.

e Provides a graphical user interface to monitor the progress of execution.

E Negotiation Algorithm

Negotiation mainly involves the Reconﬁgurer and the Negotiation Thread objects of
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Figure 6: Translation of UML/OCL to the CSP programming language

the agent is passed as a service request, which the agent negotiates on a number of
issues listed in the service request with the external client (can be the user or another
agent) before fulfilling the request. In the case of multi-criteria optimization problem,
the issues negotiated are the decision variables of the optimization problem.

In Figure 7, the state transition diagram for the Reconfigurer is given. Each time
a new optimization problem is introduced to the agent as a request, the Reconfigurer
creates a Negotiation Thread to do the negotiation and a Knowledge Source to solve
the problem. From that point on, the Negotiation Thread provides the communication
link between the Knowledge Source and the Negotiation Thread of the other agent (see
Figure 8 for the State Transition Diagram for the Negotiation Thread).

F Schema for OCLML

<?xml version="1.0" encoding="UTF-8"7> <!-- edited with XML Spy
v4.1 U (http://www.xmlspy.com) by Yonet Arif Eracar (private) -->
<1--W3C Schema generated by XML Spy v4.1 U
(http://www.xmlspy.com)--> <xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">
<xs:element name="OCLFile">
<xs:complexType>
<xs:sequence>
<xs:element name="package" type="packageType"
maxOccurs="unbounded"/>
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Figure 7: State transition diagram for Reconfigurer

</xs:sequence>
</xs:complexType>
</xs:element>
<xs:complexType name="packageType">
<xs:sequence>
<xs:element name="constraint" type="constraintType"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="Value" type="xs:string" use="required"/>
</xs:complexType>
<xs:complexType name="constraintType">
<xs:sequence>
<xs:element name="contextDeclaration">
<xs:complexType>
<xs:choice>
<xs:element name="classifierContext"
type="classifierContextType"/>
<xs:element name="operationContext"
type="operationContextType"/>
</xs:choice>
</xs:complexType>
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Figure 8: State transition diagram for the Negotiation Thread object

NT3: evClientMadeOffer
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</xs:element>
<xs:element name="defExpression" minOccurs="0"
maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="letExpression"
max0Occurs="unbounded">
<xs:complexType>
<xs:complexContent>
<xs:extension base="letExpressionType">
<xs:attribute name="Name"
type="xs:string" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="Value" type="xs:string"
use="optional"/>
</xs:complexType>
</xs:element>
<xs:element name="stereotypedExpression" maxOccurs="unbounded">
<xs:complexType>
<xs:choice>
<xs:element name="INVExpression"
type="oclExpressionType"/>
<xs:element name="PREExpression"
type="oclExpressionType"/>
<xs:element name="POSTExpression"
type="oclExpressionType"/>
</xs:choice>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexType name="classifierContextType">
<xs:attribute name="Value" type="xs:string" use="required"/>
</xs:complexType>
<xs:complexType name="operationContextType">
<xs:sequence>
<xs:element name="operationName" type="operationNameType"/>
<xs:element name="formalParameterList"
type="formalParameterListType" minOccurs="0"/>
<xs:element name="returnType" type="typeSpecifierType"
minOccurs="0"/>
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</xs:sequence>
<xs:attribute name="Name" type="xs:string" use="required"/>
</xs:complexType>
<xs:complexType name="formalParameterListType">
<xs:sequence>
<xs:element name="formalParameter" type="formalParameterType"
max0Occurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name='"collectionTypeType">
<xs:sequence>
<xs:element name="simpleTypeSpecifier" type="oclObjectType"/>
</xs:sequence>
<xs:attribute name="CollectionKind" use="required">
<xs:simpleType>
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="Set"/>
<xs:enumeration value="Bag"/>
<xs:enumeration value="Sequence"/>
<xs:enumeration value="Collection"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
<xs:complexType name="oclExpressionType">
<xs:sequence>
<xs:element name="letExpression" type="letExpressionType"
minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="expression" type="expressionType"/>
</xs:sequence>
<xs:attribute name="Value" type="xs:string" use="required"/>
</xs:complexType>
<xs:complexType name="expressionType">
<xs:sequence>
<xs:element name="logicalExpression"
type="logicalExpressionType"/>
</xs:sequence>
<xs:attribute name="InParenthesis" type="xs:boolean"
use="required"/>
</xs:complexType>
<xs:complexType name="letExpressionType">
<xs:sequence>
<xs:element name="formalParameterList"
type="formalParameterListType" minOccurs="0"/>
<xs:element name="typeSpecifier" type="typeSpecifierType"
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minOccurs="0"/>
<xs:element name="expression" type="expressionType"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="logicalExpressionType">
<xs:sequence>
<xs:element name="relationalExpression"
type="relationalExpressionType"/>
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="logicalOperator"
type="logicalOperatorType"/>
<xs:element name="relationalExpression"
type="relationalExpressionType"/>
</xs:sequence>
</xs:sequence>
</xs:complexType>
<xs:complexType name="relationalExpressionType">
<xs:sequence>
<xs:element name="additiveExpression"
type="additiveExpressionType"/>
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="relationalOperator"
type="relationalOperatorType"/>
<xs:element name="additiveExpression"
type="additiveExpressionType"/>
</xs:sequence>
</xs:sequence>
</xs:complexType>
<xs:complexType name="additiveExpressionType">
<xs:sequence>
<xs:element name="multiplicativeExpression"
type="multiplicativeExpressionType"/>
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="addOperator" type="addOperatorType"/>
<xs:element name="multiplicativeExpression"/>
</xs:sequence>
</xs:sequence>
</xs:complexType>
<xs:complexType name="multiplicativeExpressionType">
<xs:sequence>
<xs:element name="unaryExpression" type="unaryExpressionType"/>
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="multiplyOperator"
type="multiplyOperatorType"/>
<xs:element name="unaryExpression"
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type="unaryExpressionType"/>
</xs:sequence>
</xs:sequence>
</xs:complexType>
<xs:complexType name="unaryExpressionType">
<xs:choice>
<xs:sequence>
<xs:element name="unaryOperator" type="unaryOperatorType"/>
<xs:element name="postfixExpression"
type="postfixExpressionType"/>
</xs:sequence>
<xs:element name="postfixExpression"
type="postfixExpressionType"/>
</xs:choice>
</xs:complexType>
<xs:complexType name="postfixExpressionType">
<xs:sequence>
<xs:element name="primaryExpression"
type="primaryExpressionType"/>
<xs:sequence minOccurs="0">
<xs:element name="propertyCall"
type="propertyCallType" maxOccurs="unbounded"/>
</xs:sequence>
</xs:sequence>
</xs:complexType>
<xs:complexType name="primaryExpressionType">
<xs:choice>
<xs:element name="literalCollection"
type="literalCollectionType"/>
<xs:element name="propertyCall" type="propertyCallType"/>
<xs:element name="expression" type="expressionType"/>
<xs:element name="literal">
<xs:complexType>
<xs:choice>
<xs:element name="string" type="oclObjectType"/>
<xs:element name="number" type="oclObjectType"/>
<xs:element name="enumLiteral"/>
</xs:choice>
</xs:complexType>
</xs:element>
<xs:element name="ifExpression">
<xs:complexType>
<xs:sequence>
<xs:element name="conditionExpression"
type="expressionType"/>
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<xs:element name="thenExpression"
type="expressionType"/>
<xs:element name="elseExpression"
type="expressionType" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:choice>
</xs:complexType>
<xs:complexType name="propertyCallParametersType">
<xs:sequence>
<xs:element name="declarator" type="declaratorType"
minOccurs="0"/>
<xs:sequence minOccurs="0">
<xs:element name="expression" type="expressionType"
maxOccurs="unbounded"/>
</xs:sequence>
</xs:sequence>
</xs:complexType>
<xs:complexType name="complexTypeSpecifierType">
<xs:sequence>
<xs:element name="typeSpecifier" type="typeSpecifierType"/>
<xs:element name="expression" type="expressionType"/>
</xs:sequence>
<xs:attribute name="Value" type="xs:string" use="required"/>
</xs:complexType>
<xs:complexType name="declaratorType">
<xs:sequence>
<xs:element name="NameList" type="NameListType"/>
<xs:element name="simpleTypeSpecifier" type="oclObjectType"
minOccurs="0"/>
<xs:element name="complexTypeSpecifier"
type="complexTypeSpecifierType" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="formalParameterType">
<xs:sequence>
<xs:element name="type" type="typeSpecifierType"/>
</xs:sequence>
<xs:attribute name="Name" type="xs:string" use="required"/>
</xs:complexType>
<xs:complexType name="literalCollectionType">
<xs:sequence minOccurs="0">
<xs:element name="collectionItem" type="collectionItemType"
maxOccurs="unbounded" />
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</xs:sequence>
<xs:attribute name="CollectionKind" use="required">
<xs:simpleType>
<xs:restriction base="xs:NMTOKENS">
<xs:enumeration value="Set"/>
<xs:enumeration value="Bag"/>
<xs:enumeration value="Sequence"/>
<xs:enumeration value="Collection"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
<xs:complexType name="oclObjectType">
<xs:attribute name="Value" type="xs:string" use="required"/>
</xs:complexType>
<xs:complexType name="operationNameType">
<xs:choice>
<xs:element name="name" type="oclObjectType"/>
<xs:element name="addOperator" type="addOperatorType"/>
<xs:element name="multiplyOperator"
type="multiplyOperatorType"/>
<xs:element name="logicalOperator"
type="logicalOperatorType"/>
<xs:element name="relationalOperator"
type="relationalOperatorType"/>
<xs:element name="unaryOperator" type="unaryOperatorType"/>
</xs:choice>
</xs:complexType>
<xs:complexType name="propertyCallListType">
<xs:sequence>
<xs:element name="propertyCall" type="propertyCallType"
maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="propertyCallType">
<xs:sequence>
<xs:element name="pathName"/>
<xs:element name="qualifiers" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:element name="expression"
type="expressionType"
maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
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</xs:element>
<xs:element name="propertyCallParameters"
type="propertyCallParametersType" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="Type" use="required">
<xs:simpleType>
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="ARROW"/>
<xs:enumeration value="DOT"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="TimeExpression" type="xs:boolean"
use="required"/>
</xs:complexType>
<xs:complexType name="typeSpecifierType">
<xs:choice>
<xs:element name="simpleTypeSpecifier"
type="oclObjectType"/>
<xs:element name="collectionType"
type="collectionTypeType"/>
</xs:choice>
</xs:complexType>
<xs:complexType name="unaryOperatorType">
<xs:attribute name="Value">
<xs:simpleType>
<xs:restriction base="xs:NMTOKENS">
<xs:enumeration value="MINUS"/>
<xs:enumeration value="NOT"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
<xs:complexType name="collectionItemType">
<xs:sequence>
<xs:element name="expression" type="expressionType"/>
<xs:element name="expression" type="expressionType"
minOccurs="0"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="addOperatorType">
<xs:attribute name="Value">
<xs:simpleType>
<xs:restriction base="xs:NMTOKENS">
<xs:enumeration value="PLUS"/>

50



<xs:enumeration value="MINUS"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
<xs:complexType name="multiplyOperatorType">
<xs:attribute name="Value" use="required">
<xs:simpleType>
<xs:restriction base="xs:NMTOKENS">
<xs:enumeration value="MUL"/>
<xs:enumeration value="DIV"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
<xs:complexType name="relationalOperatorType">
<xs:attribute name="Value" use="required">
<xs:simpleType>
<xs:restriction base="xs:NMTOKENS">
<xs:enumeration value="EQ"/>
<xs:enumeration value="GT"/>
<xs:enumeration value="LT"/>
<xs:enumeration value="GTE"/>
<xs:enumeration value="LTE"/>
<xs:enumeration value="NEQ"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
<xs:complexType name="logicalOperatorType">
<xs:attribute name="Value" use="required">
<xs:simpleType>
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="implies"/>
<xs:enumeration value="or"/>
<xs:enumeration value="xor"/>
<xs:enumeration value="and"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
<xs:complexType name="NameListType">
<xs:sequence>
<xs:element name="NameList" type="NameListType"
minOccurs="0"/>
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</xs:sequence>
<xs:attribute name="Value">
<xs:simpleType>
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="Y"/>
<xs:enumeration value="p"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:schema>

G Fixture Design Experiment

G.1 Overview of the Fixture Design Problem

The inputs to the system are the edge connector pin (we will shortly call pin) require-
ments for one or more UUTs and the configuration of the tester (see Figure 9 for the
components of the Tester). Some of the pin requirements are the digital timing, the
voltage levels that are used, and the analog capabilities that are required. The con-
figuration of the tester contains the data on the number and the types of the channel
cards, analog instruments, and their position within the chassis that holds all the chan-
nel cards and the analog instruments. The outputs of the system are the mappings
between the UUT pins and the channels of the channel cards (like UUT pin 1 will be
connected to the channel 2 of M927 type channel card at slot 3 of the chassis).

In the experimental model, the system is represented by three sub-systems:

e Tester sub-system (see Figure 9 for the Class Diagram for the Tester sub-system).

e Fixture sub-system (see Figure 10 for the Class Diagram for the Fixture sub-
system).

e UUT sub-system (see Figure 11 for the Class Diagram for the UUT sub-system)

G.2 Empirical Calculation of Phase Transition regions

At this point, we have a number of candidate phase transition variables (or Order
Parameters as Cheeseman refers to) for the fixture design experiment. A preliminary
experiment with two of the variables, UUT pin bus size and Channel card size showed
a behavior similar to phase transition (see Appendix G.2.1 for a details).

Candidate variables:

e Channel card size (Number of channels on a channel card)
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e UUT pin cluster size. A UUT pin cluster is a group of UUT pins sharing similar
requirements. Since they share similar requirements, the search algorithms will
most likely try to match them to the channels on the same channel card.

e UUT pin bus size UUT pins which form an address bus or data bus are typically
assigned to channels physically close to each other. This physical closeness is
important for eliminating timing differences between different pins on a bus.

Candidate invariants:
e UUT pin cluster size / Channel card size

e UUT pin bus size / Channel card size

G.2.1 OZ program that demonstrates phase boundaries for Fixture
Design Experiment

In the following OZ program, a set of pins (or UUT pins) are assigned to channel cards.
In the input data, there are 16 pins and each channel card has 3 channels each. Two
kinds of pin requirements are used; bus pins, where pins in the same bus needs to be
assigned to the same channel card, and disjoint pins, where two disjoint pins cannot
be in the same channel card.

local Data fun {FxtGen Data}
NbPins = Data.nbPins
NbChannelCardSize = Data.nbChannelCardSize
Constraints = Data.constraints
MinNbChannelCards = NbPins div NbChannelCardSize
in
proc {$ Assign}
NbChannelCards = {FD.int MinNbChannelCards#NbPins}
in
{FD.distribute naive [NbChannelCards]}
%/ Assign: Pin --> ChannelCard
{FD.tuple assign NbPins 1#NbChannelCards Assign}
%% at most NbChannelCardSize per ChannelCard
{For 1 NbChannelCards 1
proc {$ ChannelCard}
{FD.atMost NbChannelCardSize Assign ChannelCard} end}
%% impose constraints
{ForAll Constraints
proc {$ C}
case C
of bus(X Ys) then
{ForAll Ys proc {$ Y} Assign.X =: Assign.Y end}
[] disjoint(X Ys) then
{ForAll Ys proc {$ Y} Assign.X \=: Assign.Y end}
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end
end}
{FD.distribute ff Assign}
end
end in
Data = data(nbPins:16 nbChannelCardSize:3
constraints: [ bus(4 [8 11]) bus(12 [13 14 15 16])
disjoint(1 [2 3 5 7 8 10])
disjoint(2 [3 4 7 8 9 11])
disjoint(3 [5 6 8])
disjoint(4 [6 101)
disjoint(6 [7 101)
disjoint(7 [8 9]1)
disjoint(8 [10]) 1 )
{ExploreOne {FxtGen Datal}}
end

Using Mozart’s OZ environment, the same program was executed for channel card
sizes of 2,3,4,5,6, and 7. The following table summarizes the results:

CC size | Nodes visited | Depth of search tree Result
2 ~2TTK 63 Completed with no solution
3 ~ 900K 34 Gave virtual memory error
4 ~ 900K 34 Gave virtual memory error
5 2190 17 Completed with a solution
6 62 14 Completed with a solution
7 30 14 Completed with a solution

56



G.3 Constraints for Fixture Design Experiment in OCL

package FXT::Definitions

-- Rec() - maps a pin to its requirements..

context Pin::Rec() : Set(PinRequirement)
post: result = self.requirements

—— UUT related definitions
context UUT def:
-- P - the set of all UUT pins

let P : Set(Pin) = self.pins
let N_P : Integer = self.pins.size

-— R - the set of all possible pin requirements.
- Start with an empty set and accumulate set R
- with the requirements collected from all pinms.
post: P->iterate(p : Pin; R : Set(PinRequirement) = Set{} |
R->including( p.Rec() ) )
-— ChannelCard related definitions.
context VXIChassis def:

-- CC - the set of all channel cards in the tester system.

let CC : Set(ChannelCard) = self.slot.module
let N_CC_MAX : Integer = 13 -- some constant

-- C - the set of all channels in the tester system

post: CC->iterate(cc : ChannelCard; C : Set(Channel) = Set{} |
C->including( cc.channels ) )

-— CAP - the set of all capabilities supported by the tester
post: C->iterate(c : Channel; CAP : Set(Capability) = Set{} |

CAP->including( c.capability ) )
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-- Cont() - maps a channel to the channel card that contains the
-= channel

context VXIChassis::Cont(c : Channel) : ChannelCard
post: result = c.card

-- Cont() - maps a set of channel to a set of channel cards that
- contains these channels

context VXIChassis::ContU(setChannel : Set(Channel))
Set (ChannelCard)

post: result = setChannel->iterate(c:Channel;
ccSet:Set(ChannelCard) = Set{} |
if Designer::PC_inv(c) <> Set{}
then ccSet->including(c.Cont())
else 1

endif)

-- Cap() - the capability function that assigns a set of
-= capabilities to the given channel

context Channel::Cap() : Set(Capability)
post: result = self.capability

-- f_map() - maps a pin requirements to a channel capability

context Designer::f_map(r : PinRequirement) : Capability
post: result = r.mapping

-- PC() - the mapping function that returns the channel that is
-= associated with the given pin.

context Designer::PC(p : Pin) : Channel

-- A constant with type Channel that represents
—-- invalid channel assignment.

def: let c_NULL : Channel = NULL
pre: P->includes(p) -- p is an element of P

-- search pin to channel assignment list to find p
-- then return channel associated with p..
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—-—- else return c_NULL.
post:

let PCAssign : Set(PinChannelAssignment) = self.assignmentList

let assignedChannels : Set(Channel)
= PCAssign->select(a | a.pin = p)
in
result = if assignedChannels->size() = 1
then p.assignment.channel
else c_NULL
endif

-- PC() - 2nd version of the the mapping function that returns
- the channel that is associated with the given pin.

context Designer::PC(pSet : Set(Pin)) : Set(Channel)
pre: P->includesAll(pSet) -- pSet is a subset of P

post:

let PCAssign : Set(PinChannelAssignment) = self.assignmentList

in
result = PCAssign->iterate(a;
assignedChannels : Set(Channel) = Set{} |
if pSet.includes(a.pin)
then assignedChannels->including(a.channel)
else 1
endif )

-- PC~{-1} O
context Designer::PC_inv(c : Channel) : Set(Pin)
pre: C->includes(c) -- ¢ is an element of C

post:

result = self.AssignmentList->iterate(
a:PinChannelAssignment;assignedPins:Set(Pin) = Set{}|
if a.channel = ¢
then assignedPins->including(a.pin)
else 1
endif)

endpackage
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—-- Constraint and Objective functions
package FXT::Constraints

-— First objective function that minimizes the the number of pins
-- that are NOT connected to any channels.

context FXT::0bjectivel()

pre constraintl: P->forAll(pl,p2 |
pl <> p2 implies Designer::PC(pl) <> Designer::PC(p2))

pre comnstraint2: P->forAll(p |
p-Rec()->forAll(r | Designer::PC(p).Cap()->includes(f_map(r))))

post: result = ONT::Minimize( Designer::PC_inv(c_NULL)->size() )

-— Second objective function that minimizes the number of channel
-— cards used to prevent the cost hike.

context FXT::0bjective2()
pre constraintl: CC->size() <= N_CC_MAX
pre constraint2: ( Designer::PC(P)- Set{ c_NULL})->size() <= N_P
post: result = ONT::Minimize( VXIChassis::Cont(C)->size() )

endpackage
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H Order Negotiation Experiment

This system is a variation of two parties, multiple issues value scoring system defined
in Section 2.6.1. The model includes more than two agents, the manufacturer (server)
and the customer(s) (clients). Manufacturer produces one type of product and has n
production machines, which can run parallel, in its plant. A potential customer starts
a negotiation with a quantity, a fixed price (for the whole batch) and a delivery date.
We should note that delivery date is different than the deadline t¢,,, for the customer.

When multiple customers come with product requests, the manufacturer agent
starts a separate negotiation thread for each customer agent. And, each negotiation
thread progresses as it is defined in the bilateral negotiation model. Roman letters,
m will stand for the manufacturer, ¢, co,--- for customers. The manufacturer agent
is capable of managing multiple negotiation threads parallel. Separate deadlines t¢ .
are assigned for each thread.

There are mainly three negotiated issues, price (p), quantity (¢) and delivery date
(dd) of the service. The values of all issues are normalized, x; € [0, 1], for the rest of
the equations.

Our version of scoring function of the manufacturer can be defined as:

V(') = w V" () + wy Ve () + wigVid (244) (13)

The assumption for the scoring functions is that the manufacturer desires higher
price, larger quantity, and later delivery date. Therefore, for all issues j (j € {p, ¢, dd}),

xz—minj f ¢ . '
Vm(xt) = max;—min;’ or € [mznj’ mal‘]] (14)
0, for other values

In this model, weights for all issues j for manufacturer w}" is a function of time
t, resources (machines used in the production) r(t), and state S of plant, wj' =
f@t,r(t), S(1)-
Overall scoring function for the customer V¢(z') has the same form as the manu-
facturer’s. However, the customers use different weights wj and individual scoring

maz;—zt

L A certain

. c . : c(rt) —
functions V. For the customer, lower price is better, V; (z,) = maz, —min;

value is preferred, no more no less, for quantity and delivery date. Diverging from that
value towards both directions will bring less satisfaction. For issues j (j € {q,dd}),

___ mazj+min;
mean; = “—5——1
" )
mean; —|j —mean;|—min; ‘ .
- or r; € |mwn;, max;
V']m(q;g) = mean; —min; ) J [ e J] (15)
0, for other values

Customer uses Time-dependent tactics. In these tactics, the dominant factor used
to decide which value to offer is time, ¢. These tactics vary the value of the issue
depending on the remaining negotiation time.

Using the definitions given in [29], we can use the following two formulas to calculate
the value to be offered by a manufacturer to a customer for issue j at time t’ as:
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ab i) = minj' + o' (max" — minj") (16)

b )= min}' + (1 — o) (maz’" —minl") (17)

where 0 < ¢/ < 7% and aj" is a parameter, which depends on the tactic used by the
manufacturer. If V™ decreases as the value of issue j increases, then the manufacturer
uses Equation 16, otherwise the manufacturer uses Equation 17, for calculating the
value to be offered.

A wide range of tactics can be defined by using different o*. However, functions
must ensure that 0 < o/j” < 1 and oz;” = 1 at . A simple form of a;-”, which
depends on the time passes during the negotiation, can be:

- / max
o = M 18)
C
Manufacturer uses resource-dependent and imitative tactics. Resource-dependent tac-
tics are similar to time-dependent ones. Therefore, Equation 16 and 17 for calculating
the counter-offer, can be applied to resource-dependent tactics, as well. The only major
change is in the calculation of o*(r(t)) functions. The assumption is that, at any time
t/, the least available resource type drives the calculation of the counter-offer. For the

manufacturing agent m, for all j € {p, q,dd}, and time t', af*(r(t)) can be defined as:

oM (t") = min(kj), @rt) (19)
(alu az, .- 7a’n) & (bly b27 e 7bn) = (alblu a2b27 T 7anbn) (20)
where ¥’ is a vector of quantities of each resource type (Tlt;bw, rgemem, rf,/wney, ---) at

time ¢ (each resource type is represented by a different dimension of the vector), Kj/r
is a vector of reciprocals of the maximum amount of each resource type at the plant

! /
(1/(Tl721?£“’ 1/Tgemersv 1/rfnoneyv o )) :
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Figure 12: Adaptive control inside Order Negotiation agent
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